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ABSTRACT 

An analysis was applied to 35 types of ionic liquids (ILs) where three basic physical properties have been 

considered in predicting their relationships with fuel desulphurization performance. By mapping the original data of 

density versus molecular weight, it provided a quick indication of some form of relationship between these two variables 

based on the chemical structure of the anion in the classified ionic liquids, especially in sulphate, phosphate and cyano-

based ILs. The mapping provided a quick and simple approach in estimating the potential of the ionic liquids’ performance 

for fuel desulphurization. Conceivably influenced from these three basic physical properties, a modest and fairly good 

correlation was derived through statistical approach.  
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INTRODUCTION 

Sulphur content in fuel has become a major environmental issue worldwide. Since June of 2006, the regulations in 

the US have required a reduction of sulphur in transport fuel from 500 to 15 ppm [1-3]. Meanwhile, in Europe, the 

regulation on sulphur in transport fuel required it to be less than 10 ppm by 2010 [4-5]. Until now, desulphurization can 

only be obtained via the heterogeneous catalytic hydrodesulfurization (HDS) process in petroleum plants. The main 

drawbacks of the HDS process include high operating temperature of 300˚C or above, high H2 pressure of up to 4MPa, 

high energy costs and difficulty in removing aromatic heterocyclic sulphur compounds such as benzothiophene (BT) and 

its derivatives [6]. Therefore, ionic liquids (ILs) may be potential candidates in overcoming HDS’ drawbacks in removing 

aromatic heterocyclic sulphur compound.  

These days, research in ILs is attracting more attention as compared to traditional organic solvents, which could 

be due to these negligible vapour pressure, non-flammability and thermally stable kind of substances [7-9]. One of the 

most appealing features of using ILs is their potential to be custom-made with pre-selected characteristics (e.g. moisture 

stability, density, viscosity and miscibility with other co-solvents) through careful selection of the cation, anion or both [9]. 

Due to the large number of possible ILs via various cation and anion combinations, it is often impractical to use trial and 

error methods to find a suitable IL for a given task [11, 15]. Based on the increasing amounts of physical property data 

generated by researchers, there is a great need to introduce an easier method of recognizing possible relationships between 

the physical properties data for a series of ILs using data mapping for preliminary screening of ILs for desulphurization 

purposes. 

In the present study, three physical properties of 35 types of ILs have been highlighted to gain more insight into 

developing a quicker screening method for the desulphurization process. By manipulating the data and using statistical 
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approach, a comparison and explanation for the similarities and grouping between the physical properties of the ILs in the 

plotted data could help predict the desulphurization performance for a new emerging ILs.  

MATERIAL AND METHOD 

Some of the ILs investigated in this work was synthesized in-house based on a published method [12] while some 

were purchased from Merck with stated halide content of less than 1%. For in-house synthesized ILs, the halide content 

was determined by ion chromatography (850 Professional IC, Metrohm, Switzerland), and the results were collected using 

MagIC Net 2.1 software. Meanwhile, the water content of the ILs was determined using coulometric Karl Fisher 

autotitrator,  Mettler Toledo DL39 with CombiCoulomat fritless Karl Fisher reagent (Merck). Both halide and water 

content measurements were done in triplicate and the average value is considered. Table 1 shows the list of all investigated 

ILs in this study. The molecular weight of each ILs was appropriately taken from COSMOtherm software. The densities of 

the ILs were measured using a rotational automated density meter, Anton Paar DMA 5000M, based on published 

procedures [13], and the results obtained in this research are in agreement with previously published data, available via 

ILTHERMO database website.  

Refractive index (RI) of the ILs was determined with an ATAGO RX-5000 Alpha digital refractometer at 

constant temperature to within ± 0.1°C. The instrument was calibrated by measuring the refractive index of deionized 

water. The sample support was rinsed with acetone and dried with a paper towel [13]. All the measurements were done in 

triplicate and the average value was used for this study.  

In the present extractive desulphurization process, a mixture of n-dodecane and benzothiophene (1000µg/mL) was 

used as model fuel. The extraction was carried out in 25mL screw-cap vials. The mixture of equal mass ratio between ILs 

and model fuel was vigorously stirred at room temperature for 30 min and another 30 min was needed for settling to attain 

equilibrium. The ILs has higher density than the model fuel. The upper phase which was the model fuel could be 

withdrawn easily and analyzed for its sulphur content using HPLC (DAD detector, reverser-phase Zorbax SB-C18 

column). Based on the values obtained, the material balance was prepared. At equilibrium, the sulphur partition coefficient 

determines the extent of the mobility of sulphur into ILs phase. The sulphur partition coefficient is defined as the ratio of 

equilibrium concentration of sulphur in ILs phase (Sa) to that in model fuel phase (Sb), as shown in equation 1 below. The 

details about the procedures and analysis are provided elsewhere [14]. 
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The statistical analysis and correlation were performed by utilizing the MATLAB software package. The original 

data was analyzed by auto-scaling it, particularly by subtracting column averages and dividing it by the column standard 

deviations which applied as data normalization. This way, each of the variables (namely molecular weight, density and 

refractive index) was given identical load in identifying the linear correlation using a statistical approach. 

RESULTS AND DISCUSSIONS 

The aim of this paper is to show that the plot of the original density data (ρ) against the molecular weight (MW) 

can provide a quick indication of the relationship between the variables if the classification of the data is done correctly. In 

addition, the plot would easily show any outliers or other aberrations among the data. In this study, the original data was 

plotted as shown in Figure 1 and the variables used in constructing it were tabulated as shown in Table 2. For easy pattern 

justification of the data plot, the data has been categorized into two groups depending on their sulphur partition coefficient 
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(Kd). Desulphurization performance can be identified from the Kd value; i) Kd > 1 indicates that the sulphur removal is 

more than 50% from model fuel and ii) Kd < 1 indicates that the removal is less than 50%. This value has become an 

important benchmark in this study as the basic selection criteria for categorizing ILs.  

Figure 1 presents the plotted data which shows scatterings of all types of ILs within the studied range as the 

desulphurization process was carried out. This leads to the observation that all 35 types of ILs showed no discernible 

pattern for separation purposes in terms of the desulphurization performance. On the other hand, when the same data were 

categorized based on the chemical structure of the ILs anion and re-plotted, clear separation regions can be observed, as 

shown in Figure 2. The four classifications identified in this figure are cyano-based ILs (correlation line with R
2
 = 0.9102), 

phosphate-based ILs (correlation line with R2 = 0.9893), sulphate-based ILs (correlation line with R2 = 0.933) and others, 

including [C4mim][BF4], [C4mim][PF6], [C4mim][FAP], [C2mim][SCL] and [C2mim][TOS] which cannot be grouped. 

Meanwhile, the sulphate-based ILs formed a stringent line on the ρ against MW plot. By excluding [P5551][MSO4], all the 

sulphate-based ILs with Kd > 1 seemed to reside on the top-left region while the sulphate-based ILs with Kd < 1 resided on 

the opposite region. For [P5551][MSO4], its exception might probably be due to its cation charge which is not situated on the 

aromatic site of this ILs. For further analysis, the classifications of individual ILs will be discussed in details after the data 

have been normalized. 

The cyano-based ILs consisted of 1-butyl-3-methylimidazolium thiocyanate ([C4mim SCN]), 1-butyl-3-

methylimidazolium dicyanamide ([C4mim DCA]) and 1-butyl-3-methylimidazolium tricyanomethane ([C4mim TCM]) 

where their chemical structures are presented in Figure 3. Referring to the experimental results of the extractive 

desulphurization performance (refer Table 2), it shows that Kd value increases with increasing number of cyano group 

(−C≡N) uptick on the anion structures and the order was as follows; SCN < DCA < TCM. Figure 4 shows the normalized 

data of ρ against MW plot. There is a strong linear correlation between the ρ and MW with a correlation coefficient, R
2
 of 

greater than 0.9. By comparing the linear correlation line and the desulphurization performance of cyano-based ILs, a 

similar trend is apparent where TCM can be found at the top spot of the correlation followed by DCA and SCN, as shown 

in Figure 4. The great thing about this similarity is that it could possibly become the predictive mapping for a new 

generation of IL that consists of cyano group, to be used purposely for fuel desulphurization, just by plotting ρ against 

MW. 

The second classified group was phosphate-based ILs which consisted of three compounds, namely 1-butyl-3-

methylimidazolium dihydrogenphosphate ([C4mim DHP]), 1-butyl-3-methylimidazolium dimethylphosphate ([C4mim 

DMP]) and 1-butyl-3-methylimidazolium dibutylphosphate ([C4mim DBP]). Figure 5 depicts their chemical structures and 

the experimental results from the desulphurization performance revealed that Kd value decreases as the number of alkyl 

chain lost on both the cation and anion parts, which follows the order of DBP > DMP > DHP. It can be explained that by 

losing the alkyl chain, the coulombic attraction between the cation and the anion of the ILs became stronger, thus hindering 

the sulphur compound’s interaction with the ILs. Figure 6 depicts the normalized data of ρ against MW plot. It can be seen 

that there is a strong linear correlation between ρ and MW with correlation coefficient, R
2
 value of 0.99. It seems obvious 

that the linear correlation of phosphate-based ILs followed the same order of desulphurization performance trend. Through 

this mapping, it could become one of the simplified methods in the search for a new phosphate-based IL for fuel 

desulphurization. 

It was observed that the ILs in the classified groups had interacted in a parallel behaviour (having characteristics 

in common), as apparent by the patterns seen on the groups’ plotted data. Upon inspection, the largest classified group 

which was the sulphate-based ILs had also shown a linear correlation, as seen in Figure 7. The plot depicts on the upper 
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side of the linear correlation, as represented by filled-dots, are the ILs with Kd values greater than 1 while on the lower 

side, depicted by unfilled-dots, are the ILs with Kd values of less than 1. A parallel behaviour can be observed in Figures 4, 

6 and 7 where each group showed that the best ILs in their group are plotted at the top of their correlation. By introducing 

these three mappings, they may demonstrate an easier method to the researchers, for identifying the potential of their latest 

synthesized ILs towards desulphurizing fuel especially with regards of the petroleum industry. 

Evidently, in order to study the linear correlation of sulphate-based ILs with the studied variables, a statistical 

approach was completed and the result is presented in Table 3. Kd is the actual value while MW, ρ and RI with mean 

values of 251.2560, 1.2404, 1.4782 and standard deviation of 50.1583, 0.1156, 0.0151, respectively, were later normalized 

to obtain the value of zero for mean and one for standard deviation of each studied variable. The RI variable seemed to 

have some minor effect on the Kd values, with only 8.77% of the data fitted the proposed linear correlation, according to 

the R
2
 value. Meanwhile, for single data of ρ and MW, the calculated R

2
 values were 0.8459 and 0.8596, respectively. 

Indeed, the corresponding correlation was fairly good in determining Kd value. Furthermore, it should be mentioned that 

the generated linear correlation with the combined variables showed improvement, by looking at the R
2
 value which 

changed from 0.8683 to 0.8717. Other scattered data which could not be classified accordingly, neither on the original nor 

on the normalized plot, remained unexplained. 

CONCLUSIONS 

A mapping of density (ρ) against the molecular weight (MW) with appropriate classification provides a quick and 

simple approach in estimating the potential of ILs performance for fuel desulphurization. The three identified groups were 

cyano-based, phosphate-based and sulphate-based ILs. A simple and fairly good correlation with three studied variables, a 

priori expected to influence, was successfully derived through statistical approach. 
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APPENDICES 

 

Figure 1: Graphical Presentation of the Original Data for 35 Types of ILs; Density (ρ) Against Molecular Weight 

(MW) where Filled-Dots Represent Kd > 1 While the Others Represent Kd < 1 

 

Figure 2: Graphical Presentation of the Original Data for 35 Types of ILs; Density (ρ) Against Molecular Weight 

(MW) with Identified Group; (Cyano-Based ILs, Circle-Plot; Phosphate-Based ILs, Triangle-Plot; Sulphate-Based 

ILs, Rectangular-Plot) 
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Figure 3: Chemical Structures of Cyano-Based ILs: (i) C4mim TCM; (ii) C4mim DCA and (iii) C4mim SCN 

 

Figure 4: Standardized Data of Density (ρ) Plotted Against Molecular Weight (MW)  

of Cyano-Based ILs, R
2
 = 0.9102 
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Figure 5: Chemical Structures of Phosphate-Based ILs: (i) C4mim DBP; (ii) C4mim DMP and (iii) C4mim DHP 

 

Figure 6: Standardized Data of Density (ρ) Plotted Against Molecular Weight (MW)  

of Phosphate-Based ILs, R
2
 = 0.9893 
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Figure 7: Standardized Data of Density (ρ) Plotted Against Molecular Weight (MW) of Sulphate-Based ILs, R
2
 = 

0.933, [P5551][MSO4] was Excluded; (Filled-Dots Represent Kd > 1 While Others Represent Kd < 1) 

Table 1: List of Investigated ILs in this Study 

 

Acronym Name of ILs 

P5 5 5 1 MSO4 Triphenylmethylphosphonium methylsulfate 

C1Py MSO4 1-methylpyridinium methylsulfate 

C1Pyz MSO4 1-methylpyrazolium methylsulfate 

C1im MSO4 1-methylimidazolium methylsulfate 

C1mPyrr MSO4 1,1-dimethylpyrrolidinium methylsulfate 

C2mim SCL 1-ethyl-3-methylimidazolium salicylate 

C2mim TOS 1-ethyl-3-methylimidazolium tosylate 

C4mim BF4 1-butyl-3-methylimidazolium tetrafluoroborate 

C4mim PF6 1-butyl-3-methylimidazolium hexafluorophosphate 

C4mim FAP 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate 

C4mim OTf 1-butyl-3-methylimidazolium trifluoromethanesulfonic 

C4mim Ac 1-butyl-3-methylimidazolium acetate 

C4mim NO3 1-butyl-3-methylimidazolium nitrate 

C4mim DBP 1-butyl-3-methylimidazolium dibutylphosphate 

C4mim DMP 1-butyl-3-methylimidazolium dimethylphosphate 

C4mim DHP 1-butyl-3-methylimidazolium dihydrogenphosphate 

C4mim SCL 1-butyl-3-methylimidazolium salicylate 

C4mim SCN 1-butyl-3-methylimidazolium thiocyanate 

C4mim TCM 1-butyl-3-methylimidazolium tricyanomethane 

C4mim DCA 1-butyl-3-methylimidazolium dicyanamide 

C4mim Imd 1-butyl-3-methylimidazolium imidazolide 

C4mim Pyd 1-butyl-3-methylimidazolium pyrazolide 

C4mim BZT 1-butyl-3-methylimidazolium benzoate 

C4mim HSO4 1-butyl-3-methylimidazolium hydrogensulfate 

C4mim OSO4 1-butyl-3-methylimidazolium octylsulfate 

C1mim MSO4 1,3-dimethylimidazolium methylsulfate 

C2mim MSO4 1-ethyl-3-methylimidazolium methylsulfate 

C4mim MSO4 1-butyl-3-methylimidazolium methylsulfate 

C1eim ESO4 1-methyl-3-ethylimidazolium ethylsulfate 

C2eim ESO4 1,3-dethylimidazolium ethylsulfate 

C4eim ESO4 1-butyl-3-ethylimidazolium ethylsulfate 

C1bim BSO4 1-methyl-3-butylimidazolium butylsulfate 

C2bim BSO4 1-ethyl-3-butylimidazolium butylsulfate 

C4bim BSO4 1,3-dibutylimidazolium butylsulfate 

C8mim Cl 1-octyl-3-methylimidazolium chloride 
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Table 2: Database of Molecular Weight (MW), Density (ρ) and Refractive Index (RI) of Studied Ionic Liquids 

Name of ILs MW ρ RI Kd 

P5 5 5 1 MSO4 388.42 1.3086 1.5607 0.370 

C1Py MSO4 205.23 1.4113 1.5213 0.234 

C1Pyz MSO4 194.21 1.3927 1.4688 0.266 

C1im MSO4 194.21 1.3796 1.4822 0.298 

C1mPyrr MSO4 211.28 1.3078 1.4487 0.316 

C2mim SCL 248.28 1.2051 1.5612 1.020 

C2mim TOS 282.36 1.2261 1.5407 (1.5380)* 0.471 

C4mim BF4 226.02 1.2006 1.4238 (1.4215)* 0.960 

C4mim PF6 284.19 1.3652 1.4110 (1.4084)* 1.083 

C4mim FAP 584.23 1.7061 1.3772 0.923 

C4mim OTf 288.29 1.2851 1.4380 (1.4368)* 0.942 

C4mim Ac 195.24 1.0527 1.4740 1.564 

C4mim NO3 201.22 1.1516 (1.1565)* 1.5059 1.500 

C4mim DBP 348.42 1.0346 1.4534 1.703 

C4mim DMP 264.26 1.0751 1.4790 1.439 

C4mim DHP 236.21 1.0822 1.5031 0.191 

C4mim SCL 276.33 1.1515 1.5367 1.632 

C4mim SCN 197.31 1.0704 1.5335 1.857 

C4mim TCM 229.28 1.0467 1.5081 3.167 

C4mim DCA 205.26 1.0581 (1.0580)* 1.5064 2.448 

C4mim Imd 206.29 1.1580 1.5151 1.857 

C4mim Pyd 206.29 1.1571 1.5255 1.703 

C4mim BZT 260.33 1.0905 1.5224 2.030 

C4mim HSO4 236.29 1.2958 1.4907 0.205 

C4mim OSO4 348.51 1.0606 (1.0601)* 1.4686 (1.4699)* 2.030 

C1mim MSO4 208.24 1.2980 1.4834 (1.4827)* 0.409 

C2mim MSO4 222.26 1.2909 1.4772 0.493 

C4mim MSO4 250.32 1.2082 (1.2124)* 1.4755 (1.4778)* 1.222 

C1eim ESO4 236.29 1.2631 1.4791 (1.4794)* 0.587 

C2eim ESO4 250.32 1.2431 1.4741 0.7544 

C4eim ESO4 278.38 1.1557 1.4714 1.273 

C1bim BSO4 292.40 1.1173 1.4801 1.063 

C2bim BSO4 306.42 1.1130 1.4787 1.196 

C4bim BSO4 334.48 1.0693 1.4735 1.439 

C8mim Cl 230.78 1.0065 1.5087 (1.5050) 0.887 

   ()* - open source available from ILTHERMO database website 

 

Table 3: The Simplified Analysis of Variance (ANOVA) with Proposed Linear Correlation 

 

Equation R
2
 P Value 

Kd = -0.1638[RI] + 0.7857 0.0877 0.2840 

Kd = -0.5089[ρ] + 0.7857  0.8459 0.0 

Kd = 0.513[MW] + 0.7857 0.8596 0.0 

Kd = -0.1994[ρ] + 0.3204[MW] + 0.7857 0.8683 0.0 

Kd = -0.1223[ρ] + 0.3866[MW] – 0.0389[RI] + 0.7857 0.8717 0.0 

  P value – the value should less than 0.05 in order to justify the proposed correlation to be statistically                                

significant 

 




